

Quantifying Town Development in Space and Time using Land Use Data

Caroline Bayr, Miriam Steurer JOANNEUM RESEARCH – POLICIES

REAL CORP 2013

THE INNOVATION COMPANY www.joanneum.at

Urban Sprawl

uncontrolled spreading out of built-up areas

"A gallon of gas can be used up just driving to get a gallon of milk."
- Al Gore (1999)

Main components of Urban Sprawl:

- Low density zoning
- Single family homes on large plots
- Congestion due to increased car use

"We know that sprawl is significant, but we are not sure what it is exactly or how to measure it." - Frenkel and Ashkenazi (2008)

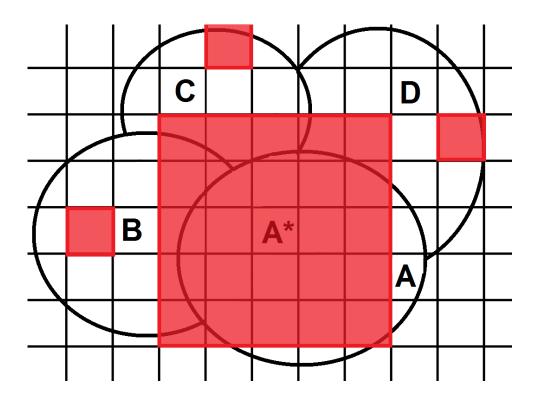
(1) Density Measures

Population density of the whole area:

$$D_1 = \frac{population}{whole \ area}$$

Population density of the built-up area:

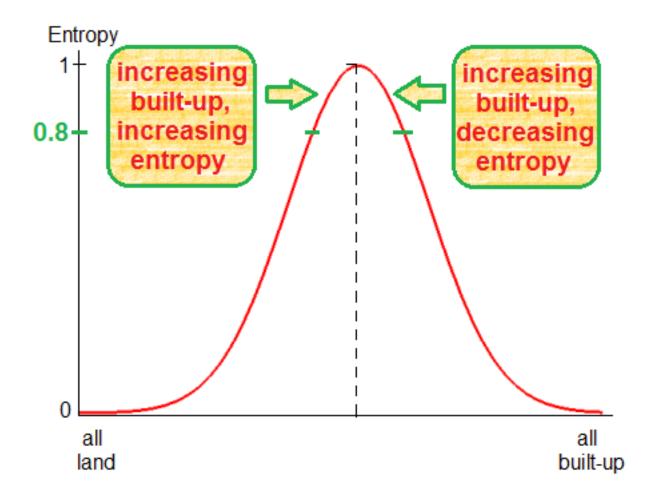
$$D_2 = \frac{population}{built - up \ area}$$


Population doesn't spread evenly across all land use types (e.g. nationalparks, water, industry area, ...)

Decreasing population density the increasing urban sprawl!

That's not always true!

(2) Shape based Measures


Often political boundary does not coincide with its functional boundary (no population data available)

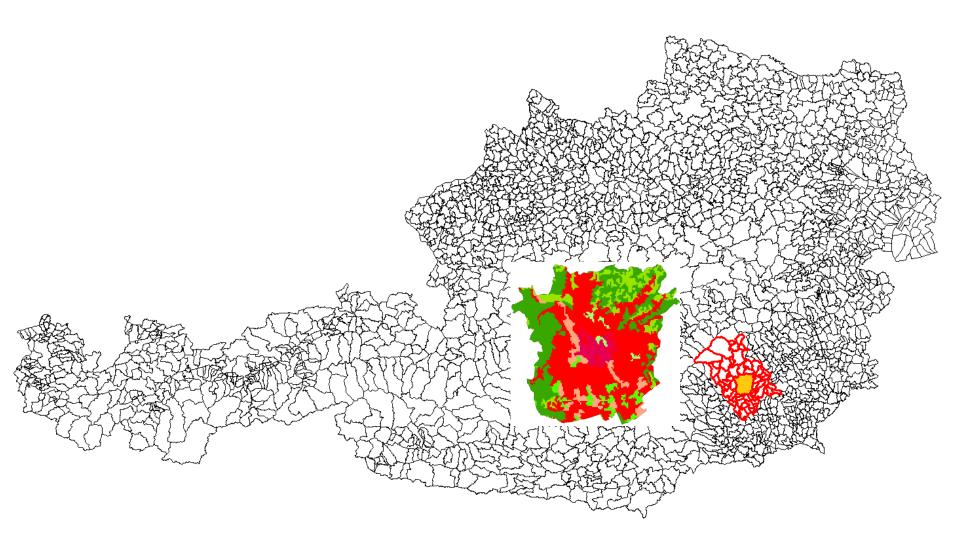
THE INNOVATION COMPANY 5 www.joanneum.at

Entropy Measures

- Ranges from 0 to 1
 - 0: no sprawl, very compact; 1: high sprawl, very dispersed

(3) Entropy Measures

$$E = -\sum_{i} p_{i} \cdot \log(p_{i})$$


$$p_i = \frac{x_i}{\sum_i x_i}$$

- \blacksquare Entropy Measure E_1 with population density D_1
- Entropy Measure E_2 with population density D_2
- \blacksquare Entropy Measure E_3 with density of built-up area

increasing entropy ⊏> increasing urban sprawl

Austria - Styria Graz and its surrounding communities

Results

decreasing

increasing

urban sprawl

Sprawl Measures	Density D ₁		Density D ₂		Entropy E ₁		Entropy E ₂		Entropy E ₃	
	2000	2006	2000	2006	2000	2006	2000	2006	2000	2006
Graz	1.781	1.944	3.140	3.635	0.901	0.928	0.952	0.937	0.978	0.990
Surrounding communities	108	123	323	297	0.914	0.914	0.924	0.931	0.981	0.979
Graz including surrounding area	281	311	614	642	0.913	0.915	0.927	0.932	0.981	0.981

Urban Sprawl has many faces, we need different techniques!

ıwl!

Contact Details:

Caroline Bayr (caroline.bayr@joanneum.at)

JOANNEUM RESEARCH
POLICIESCentre for Economic and
Innovation Research
Leonhardstraße 59
8010 Graz, Austria